IDA Pro > IDA Pro教程 > 技术问题 > 使用IDA分析测试银行FTP服务

使用IDA分析测试银行FTP服务

发布时间:2022-10-10 11: 57: 50

经典的渗透测试需要评估各种弱点的技能,通常是处理常见的bug类。渗透测试期间很少利用内存损坏,原因是它们可能有风险(您不想使生产系统崩溃),而且可能很耗时(如果您开发/调整了漏洞)。使用公共脚本利用已知内存损坏漏洞的情况也相当罕见,因为供应商和用户都倾向于非常认真地对待他们的补丁。然而,这些类型的弱点可能使攻击者能够收集强大的原语,如远程命令执行或秘密窃取。

此外,在银行界,这类问题会引起巨大的骚动,这是常识,尤其是在没有补丁的情况下。尽管如此,在安全评估期间能够检测内存损坏,可以通过关闭易受攻击的服务来避免技术或经济灾难。

 

最后,让我们诚实地说:遗留软件几乎从未被审计过,因为只要有可能,主要部分都会退役。然而,其余部分几乎从未测试过。原因很简单:这类软件通常很难修补,导致用户避免在多个漏洞评估中浪费时间。通常情况下,第一次审计据称将查明最明显的弱点。只要检测到不会导致崩溃的内存损坏错误,几乎肯定不会被利用。

 

因此,我建议您遵循我对CVE-2019-4599的分析。这是我在经典渗透测试评估期间必须穿过的路径。起初我没想到会有这样的惊喜。

 

目标

IBM Sterling PeSIT FTP服务是一个完整交易环境的一部分,旨在同步大型金融实体之间的文件,以便跟踪(例如)外国银行的现金提取。这一原理被称为远程学习。

当然,这些文件的使用-以及它们的内容-可能会有所不同,但它们最终都是使用某种交换协议传输的。虽然国际标准建议使用SWIFT,但自20世纪80年代以来,法国银行一直在使用名为PeSIT的协议。

 

此外,Connect:Express软件套件中还包括FTP服务器。在两个法国组织之间无法建立PeSIT链路的情况下,它被用作回退协议。

 

因此,以下是攻击FTP服务器的要点:。

当被银行使用时,它在互联网上监听与其他银行实体的通信,尽管银行通常会将服务定位在IPSEC隧道后面。FTP协议本身是最著名的协议之一,其部分在几个RFC中进行了描述,更重要的是,渗透测试在开发编写阶段更具挑战性!

 

第二点并不真正相关,因为FTP协议的实现似乎没有遵循对利用漏洞至关重要的规范(RFC 959 p.30/31)。

 

静态分析

由于二进制文件是封闭源代码的,所以让我们从分解它开始。值得庆幸的是,二进制代码没有被剥离,大多数函数都以法语或法语/英语混合标记。查看main()函数,我们可以看到使用getopt()处理本地参数和标志,如下图所示:

与任何典型的服务器一样,二进制文件从监听传入的TCP连接开始。一旦从远程对等点建立了连接,进程将获得fork(),receive_commande()处理客户端发送的TCP负载。即,我们的主要(远程)入口点:

receive_commande()基本上调用两个函数:

●TCP_RECV():调用recv()

●analyse_commande():将FTP命令分派给适当的处理程序

 

我们先来分析一下TCP_RECV().这是一个简化版本:

 void*TCP_RECV(int mode)

 {

 int fd;

 int cur;

 if(mode==2){

 //load"more data"(e.g.partial file upload)

 cur=lit_parm->buf_lg;

 fd=sock_dtp;

 }else{

 [0]cur=0;

 fd=sock_dcp;//incomming connection socket

 }

 [1]lit_parm->buf_lg=recv(fd,&lit_parm->buf[cur],lit_parm->max_len-cur,0);

 if(lit_parm->buf_lg>0){

 if(mode==1){

 if(strf==2){

 [2]lit_parm->buf_lg-=2;

 }else{

 //...

 }

 }else{

 //...

 }

 }

 //...

 }

 

换句话说,它填充了以下struct lit_parm_t结构:

 struct lit_parm_t{

 char*buf;//pointer to user supplied data

 int buf_lg;//length returned by recv()minus 2

 //...

 int max_len;//max buffer length

 }

 

尤其是,lit_parm->buf保存从客户端读取的全部内容recv()[1],其中cur==0([0]).

 

人们可能会注意到[2]。是的lit_parm->buf_lg减2。老实说,我不知道为什么这个语句存在,但它实际上导致了一个错误(稍后会详细介绍)。

 

lit_parm本身是一个全局变量,指向在init()(在启动之前调用fork()):

 void init()

 {

 //...

 input_net=malloc(130976);

 //...

 lit_parm=calloc(1uLL,32uLL);

 lit_parm->buf=input_net;

 lit_parm->buf_lg=130976;

 lit_parm->max_len=130976;

 //...

 }

反过来,input_net也是指向堆的全局变量。有人可能会注意到,“130976”看起来像是缓冲区的MAX_INPUT_SIZE。

 

一旦接收到数据TCP_RECV(),receive_commande()调用analyse_commande()这是主要的命令调度。analyse_commande()区分两组命令:

●预认证:HELP、STAT、USER/PASS、ALLO

●身份验证后:所有其他命令

 

从攻击面的角度来看,我们要么需要在认证前命令中找到漏洞,要么需要在认证后绕过,然后在认证后命令中找到漏洞。在后一种情况下,我们需要“两个漏洞”。这看起来更像是“工作”,并且具有预授权错误更性感!

 

在粗略查看了不同的pre-auth命令之后,重点已经放在了ALLO命令上。

 

ALLO command handler的ALLO命令(用于ALLOcate)是可以在预认证模式下它用于分配足够的空间在文件上传之前通常,下一个命令例如应该是STOR。

 

正如RFC959代表的,预期的语法是:

ALLO [R]

 

一旦收到数据TCP_RECV()(因此两者lit_parm->buf和lit_parm->buf_lg已填充),ALLO命令处理程序(调用自analyze_commande())尝试执行以下操作:

1.查找的长度(按字符)

2.如果实际上是一个数字,则将用户提供的数据(即)复制到rem_file缓冲

 

让我们检查一下实现:

 int i;

 //find the number of characters of""(stop at first space or ends of data)

 [0]for(i=0;lit_parm->buf_lg-5>i&&lit_parm->buf[5+i]!='';++i)

 {

 }

 

 [1]if(verif_num(i,(*lit_parm->buf+5))){

 if(lit_parm->buf_lg-5

 copy_len=i-1;

 else

 copy_len=i;

 

 [2]memcpy(rem_file,(*lit_parm->buf+5),copy_len);

 rem_file[copy_len]=0;

 //...

 

为了使事情更简单,让我们调用位于过去5个字节的字符串lit_parm->buf:有效载荷。

 

所以,变量i设置为PAYLOAD的[0]。然后,检查PAYLOAD仅由数字组成verif_num()在[1]中。最后,缓冲区rem_file填充有PAYLOAD大小copy_len在[2]中。

 

人们可能会立即注意到在测试期间没有“长度检查”memcpy()在[2]中。它充满了大小的用户控制数据(PAYLOAD)copy_len进入rem_file.全局变量rem_file本身存储在.bss作为256字节的字符数组。

 

换句话说,传递以下命令会导致.bss中的缓冲区溢出:

ALLO 111...<252 times>...111111

^start overflowing on the next variable in the.bss

 

此时,对PAYLOAD是它只能包含由verif_num().则后者返回true PAYLOAD仅由数字组成,i为零。

 

这可能看起来像这里的“大赢”,但“大赢”不等于“速赢”:-)。

 

事实上,仅限于“仅数字”字符会导致更难的利用。在下一节中,我们将展示如何绕过这个限制并溢出rem_file具有几乎任意数据的缓冲区。

 

绕过verif_num()

在上一节中,我们看到我们可以触发.bss上的缓冲区溢出,但它有一个限制:我们的有效负载仅限于数字字符。

 

实施

首先,让我们看看verif_num()实现:

 bool verif_num(int ctr,char*test_char)

 {

 int i;

 for(i=0;i);++i)

 {

 }

 return i==ctr;

 }

为了通过检查,字符串test_char必须由数字字符组成,最多为ctr字符。

 

此外,如果ctr设置为零,verif_num()将始终返回true。

 

回到ALLO处理程序代码,我们看到verif_num()的ctr参数是使用这里计算的i变量调用的:

 for(i=0;lit_parm->buf_lg-5>i&&lit_parm->buf[5+i]!='';++i)

 {

 }

 

在这里被称为:

 if(verif_num(i,(lit_parm->buf+5))){

 ...

 }

并在此调用:基本测试用例

 

好,让我们用一些实际数据来分析这一部分。以下是我们的测试用例:

 |#case|lit_parm->buf|lit_parm->buf_lg|i|verif_num()|copy_len|comment|

 |-----|-------------|----------------|-|-----------|--------|-----------------------|

 |0|'ALLO'|5|0|true|0|with one space|

 |1|'ALLO a'|6|0|false|n/a||

 |2|'ALLO 1'|7|0|true|0|two spaces before digit|

 |3|'ALLO a'|7|0|true|0|two spaces before char|

 |4|'ALLO 1'|6|1|true|1||

 |5|'ALLO 1'|7|1|true|1|one space after|

 |6|'ALLO 12'|7|2|true|2||

 

正如我们在#0、#1、#4、#5和#6的情况下看到的,verif_num()表现如预期,以及i值设置正确。反过来,copy_len等于i.

 

但是,查看案例#2和#3,在ALLO命令之后插入两个空格,我们看到i总是设置为零,因此verif_num()也返回真!

 

也就是说,我们达到以下代码:

 [0]if(lit_parm->buf_lg-5

 copy_len=i-1;//<----unreachable code?!

 else

 copy_len=i;

 

 [1]memcpy(rem_file,lit_parm->buf+5,copy_len);

回到案例#3,我们看到我们的有效载荷可以是ALLOa或者ALLOaaaaaaa...(两个空格)。换句话说,通过使用“两个空格技巧”,我们可以将一些任意数据放入PAYLOAD。

 

在那些情况下,i也设置为零,即copy_len设置为零!不能这样调用0字节的溢出!

 

相反,回顾上一段代码中的[0]行,这个条件似乎永远不会为真,因为lit_parm->buf_lg最小值为5.或...是吗?

 

重新考虑测试用例

还记得之前公开的TCP_RECV()吗?是的,在调用recv()之后出现了一条“奇怪的线”:

lit_parm->buf_lg=recv(fd,&lit_parm->buf[cur],lit_parm->max_len-cur,0);

//...

lit_parm->buf_lg-=2;//<----what the hell?!

所以是的,我们之前的测试用例是错误的,让我们重写它们!

 

回到计算i,我们看到如果lit_parm->buf_lg小于5,然后i将始终设置为零(它不会在for环形)。因此,verif_num()也总是返回true!

 

 |#case|lit_parm->buf|lit_parm->buf_lg|i|verif_num()|copy_len|comment|

 |-----|-------------|----------------|-|-----------|----------|-----------------------|

 |0|'ALLO'|3|0|true|0xffffffff|with one space|

 |1|'ALLO a'|4|0|true|0xffffffff||

 |2|'ALLO 1'|5|0|true|0xffffffff|two spaces before digit|

 |3|'ALLO a'|5|0|true|0xffffffff|two spaces before char|

 |4|'ALLO 1'|4|0|true|0xffffffff||

 |5|'ALLO 1'|5|0|true|0|one space after|

 |6|'ALLO 12'|5|0|true|0||

 

换句话说,如果我们的PAYLOAD的大小为零或一个字符(无论如何),copy_len设置为0xffffffff。

 

这是一个INT UNDERFLOW婴儿,会导致巨大的memcpy()在.bss!

 

我们可能会从中受益,但它引发了两个问题:

1.覆盖从开始的0xffffffff字节.bss肯定崩溃会使进程

2.我们可以实际控制数据(即PAYLOAD)并且不限于零或一个字节吗?

 

滥用未初始化内存

回到memcpy()在ALLO命令处理程序中调用,我们看到我们可以触发巨大的缓冲区溢出rem_file(位于.bss部分)。代码是:

memcpy(rem_file,lit_parm->buf+5,copy_len);

 

提醒一句,lit_parm->buf已设置且仅设置在recv(),即用户控制的数据:

lit_parm->buf_lg=recv(fd,&lit_parm->buf[cur],lit_parm->max_len-cur,0);

 

需要注意的一件事是lit_parm->buf(初始化于init()之前fork())永远不会在每个之间recv()称呼!让我们利用这种行为来溢出rem_file缓冲区任意数据。

 

基本上,利用策略变为:

1.call<5 bytes>:将数据设置在lit_parm->buf

2.调用ALLO<0或1个任意字节>:仅覆盖5或6个第一个字节lit_parm->buf并使缓冲区的其余部分保持不变。

 

当然,我们最多只能控制130971(130976-5)字节的数据。这是因为lit_parm->max_len限制。

 

查看进程的内存布局,这将覆盖整个.bss部分,然后点击NULL页面并引发segfault!

 

这是一个解决的问题!不过还有一个问题:如何利用巨大的溢出(0xffffffff字节)会引发segfault的事实?

 

处理巨大的溢出

通常,当缓冲区溢出错误覆盖了很大一部分连续(虚拟)内存时,很有可能引发页面错误(试图写入非映射内存和/或只读页面)。在这些情况下,内核向通常被终止的进程发出SIGSEGV信号。

 

然而,看着init()函数,我们看到设置了很多不同的信号处理程序:

 puts("init:*****signals caught");

 signal(1,1);

 signal(2,sig_fin);

 signal(3,sig_fin);

 signal(4,sig_fin);

 signal(5,1);

 signal(6,sig_fin);

 signal(8,sig_fin);

 signal(7,sig_fin);

 signal(11,sig_fin);//SIGSEGV

 signal(31,sig_fin);

 signal(13,1);

 signal(14,1);

 signal(15,sig_fin);

 signal(20,1);

 signal(17,sig_chld);

 signal(21,1);

 signal(22,1);

 signal(29,1);

 signal(10,sig_usr1);

 signal(12,sig_usr2);

 

因此,二进制文件为SIGSEGV信号绑定了一个信号处理程序:sig_fin()。换句话说,如果我们的溢出在调用memcpy()期间引发SIGSEGV,执行流将重定向到sig_fin()。

 

原文地址:https://blog.lexfo.fr/pentesting-pesit-ftp.html

展开阅读全文

标签:IDA

读者也访问过这里:
邀请您进入交流群 点击扫码
400-8765-888 kefu@makeding.com

专业销售为您服务

欢迎添加好友,了解更多IDA优惠信息,领逆向工程学习资料礼包1份!
热门文章
exe反编译工具哪个好?反编译能力强的工具盘点
随着软件技术的发展,exe(可执行文件)已经成为了电脑、手机等多个平台上的主要软件运行格式,而对于exe文件的反编译也成为了逆向工程中不可缺少的一个步骤。本文将介绍一些常用的exe反编译工具,并评价其优缺点,帮助读者选择合适的工具。
2023-04-12
idapro怎么改为中文
IDA Pro是一款功能强大的反汇编和反编译工具,广泛应用于逆向工程和软件开发领域。在使用IDA Pro时,如果我们不习惯英文界面,可以将其改为中文界面。本文将介绍IDA Pro怎么改为中文界面。IDA Pro界面改成中文主要有两种方法,下面是详细介绍。
2023-04-19
c++反编译工具有哪些
反编译C++代码的工具一般是针对可执行文件和库文件的反汇编和逆向分析工具。本文将给大家介绍c++反编译工具有哪些的内容。市面说的c++反编译工具有很多,下面介绍几款使用认识较多的软件。
2023-04-23
ida怎么查找字符串 ida字符串窗口快捷键
在数字化时代,逆向工程作为解密软件和分析程序的关键技术,正日益受到广泛关注。在逆向分析的过程中,IDA(Interactive DisAssembler)是一款备受推崇的工具,它为逆向工程师们提供了强大的功能和灵活的操作。本文将带您深入探讨如何在IDA中查找字符串,优化字符串窗口的使用,并探讨IDA如何将变量转换成字符串,帮助您更加熟练地驾驭这一工具,为逆向分析的世界增添一抹精彩。
2023-09-27
ida如何转伪代码 ida伪代码怎么看
IDA Pro是一款常用的反汇编和反编译工具,可以帮助我们分析二进制文件的实现细节和执行过程,以便更好地理解程序的执行过程和逻辑。在进行逆向工程的过程中,我们经常需要将反汇编结果转换为伪代码,以便更好地进行分析和修改。本文将介绍如何使用IDA Pro转换为伪代码,并简单讲解ida伪代码怎么看。
2023-04-14
最新文章
IDA逆向QT控件的获取方法 IDA逆向编译boot.img
在逆向工程的实际操作中,面对QT界面程序和Android系统中的boot.img文件,分析手段与工具的专业化程度决定了解析效率。IDA Pro作为行业常用的反汇编平台,能通过静态和动态手段快速捕捉程序结构,定位控件创建逻辑或内核加载过程。本篇文章将围绕“IDA逆向QT控件的获取方法,IDA逆向编译boot.img”为核心展开细节讲解,从QT界面逻辑提取、boot.img反汇编流程到扩展技巧,以便真正解决使用IDA Pro进行高效逆向的实际问题。
2025-07-28
IDA怎么变成伪代码 IDA伪代码插件怎么用
在逆向分析过程中,阅读原始汇编指令对大多数分析人员而言既耗时又容易出错。为了更直观理解程序逻辑,IDA Pro提供了将二进制代码转换为伪C代码的功能,辅以伪代码插件的使用,可以极大提升阅读效率和逻辑理解能力。围绕“IDA怎么变成伪代码,IDA伪代码插件怎么用”,本文将详细介绍IDA Pro伪代码生成的步骤、插件配置方法实用技巧,帮助用户从基本功能到高级使用实现高效逆向分析。
2025-07-28
IDA动态调试的使用方法 IDA动态调试后自动更新变量名
在分析复杂程序时,仅靠静态反汇编往往无法看到完整的运行逻辑,尤其是加壳、动态调用、异或加密等场景。此时,借助IDA Pro的动态调试功能,可以实时捕捉程序执行流程,监控变量值和调用栈变化,大大提高分析准确性。更进一步,IDA Pro还支持调试过程中自动更新变量名和函数名,提高代码可读性。本文围绕“IDA动态调试的使用方法IDA动态调试后自动更新变量名”进行详解,帮助你从基础操作入手,深入掌握IDA的高级用法。
2025-07-28
IDA怎么修改汇编指令 IDA修改汇编代码快捷键
在使用IDA Pro进行二进制逆向分析时,经常需要对反汇编得到的代码进行调整和编辑,例如修正误识别的指令、插入特定的跳转逻辑、或清除垃圾代码结构。由于IDA Pro本身具有强大的交互式反汇编能力,因此“IDA怎么修改汇编指令,IDA修改汇编代码快捷键”成为用户搜索频率较高的实操问题。本文将围绕这个话题,从修改步骤到操作技巧全面展开,帮助用户高效掌控IDA Pro的编辑能力。
2025-07-28
IDA Pro反汇编出现一大堆函数如何优化 IDA Pro的反汇编性能
在使用IDA Pro对可执行文件进行静态分析时,经常会遇到“函数爆炸”——IDA Pro自动识别出大量函数,而其中很多其实并不是真正的代码入口。这些伪函数不仅影响阅读效率,还严重拖慢IDA Pro的分析性能。要搞清楚“IDA Pro反汇编出现一大堆函数如何优化IDA Pro的反汇编性能”,就必须深入理解IDA的工作机制,并对常见问题有针对性地进行处理。
2025-07-28
IDA Pro调试过程中查看基址 IDA Pro调试多线程的解决方法
在逆向分析和漏洞挖掘的过程中,IDA Pro作为业界广泛使用的静态与动态分析工具,承担着极为关键的角色。尤其在调试环境中,程序基址的准确获取与线程调度的合理处理,将直接影响整个分析流程的准确性与效率。对于初中级用户而言,“IDA Pro调试过程中查看基址”与“IDA Pro调试多线程的解决方法”常常是易出错、高频卡顿的问题节点。本文将围绕这两个核心环节,进行实操级别的详细解析,并进一步延伸说明IDA Pro如何借助Trace功能还原函数调用路径,以帮助使用者构建完整调试体系,提升静动态结合分析的深度和广度。
2025-07-28

通过微信咨询我们

欢迎添加好友,了解更多IDA优惠信息,领取逆向工程学习资料礼包1份!

读者也喜欢这些内容: